COVID-Zahlen-Betrug: Wie in der Schweiz manipuliert wird

In der Mordstatistik eines Landes werden 20 Mordopfer geführt, die mit Sprengstoff in die Luft gejagt wurden und 40, die erschossen wurden. In einer der Mordstatistik eines anderen Landes wurden 15 Mordopfer in Einzelteile gesprengt, 65 wurden erschossen. Sie wollen die Häufigkeit der Mordopfer für diese beiden Länder vergleichen. Wie tun Sie das?

Eine Textaufgabe, wie sie im Mathematikbuch der Mittelstufe einer beliebigen Schule stehen könnte.
Wie viele der Schüler kämen wohl auf die Idee, die jeweiligen Mordopfer auf die jeweils in dem entsprechenden Land vorfindbare Anzahl der Sprengstoff- und Schusswaffenbesitzer zu beziehen? Wie viele würden die Anzahl der Mordopfer auf die Einwohnerzahl des jeweiligen Landes beziehen, um sie vergleichbar zu machen?

Letzteres drängt sich natürlich auf. Eine Standardisierung, deren Zweck darin besteht, Zahlen vergleichbar zu machen, benötigt eine GLEICHE Basis oder – wenn es, wie in unserem Beispiel um den Vergleich zweier Länder geht, eine Basis, die eine funktionale Äquivalenz ermöglicht, bei der gemeinhin die Annahme gemacht wird, dass alle nicht berücksichtigten Variablen in den beiden Ländern gleichverteilt in ihrem Effekt auf das Ergebnis sind.

Im vorliegenden Fall liegt es nahe, die Anzahl der jeweiligen Mordopfer pro 100.000 Einwohner des jeweiligen Landes auszuweisen. Sagen wir Land A hat 300.000 Einwohner, Land B 450.000, dann folgt daraus eine standardisierte Häufigkeit von Mord durch Erschießen von 13,3 für Land A und von 14,4 für Land B.

Das ist Grundlehrstoff, den jeder Schüler nach der 10. Klasse beherrschen sollte.
Seltsamerweise ist es ein Grundlehrstoff, den viele Verantwortliche in vielen Ländern im Zusammenhang mit dem Versuch, die Effektivität der Impfung zu schönen, vergessen.

Das reicht wie üblich, um die dumpfe Zunft, die sich in Redaktionen von MS-Medien findet, zu täuschen und dazu zu bringen, die manipulierten Daten an ihre Leser weiterzugeben, aber es reicht nicht, um die Leser von ScienceFiles zu täuschen. Einer unserer Leser aus der Schweiz hat uns auf den Schweizer CORONA-Betrugsversuch in Statistik aufmerksam gemacht:

Wir stellen ihn in zwei Abbildung dar.
Die erste Abbildung zeigt die absoluten Zahlen der wegen COVID-19 Hospitalisierten für Geimpfte, teilweise Geimpfte und Ungeimpfte in der Schweiz. Die zweite Abbildung zeigt angeblich auf 100.000 Einwohner standardisierte Daten:


Die statistische Schweinerei, die hier angewendet wurde, sorgt dafür, dass die Differenz zwischen geipmften Hospitalisierten und ungeimpften Hospitalisierten um den Faktor 2.2 zwischen beiden Abbildungen erhöht wird, natürlich zu Gunsten Geimpfter. Der Betrugsversuch basiert darauf, dass eine Standardisierung nicht auf 100.000 Einwohner, wie angegeben, sondern auf 100.000 Geimpfte bzw. 100.000 Ungeimpfte (oder teilweise Geimpfte) vorgenommen wird. Um im Beispiel oben zu bleiben: Hier wird die Anzahl der Sprengstofftoten auf die Anzahl Sprengstoffbesitzer pro Land standardisiert und dann verglichen. Ein Vergleich, der Blödsinn ist, da sich die Grundgesamtheiten nicht gleich verteilen.

Der Zweck einer Standardisierung besteht darin, unterschiedliche Werte auf DIESELBE Basis, nicht auf unterschiedliche Basen zu beziehen. Eine solche Standardisierung ist die Vorraussetzung um zum Beispiel einen Ländervergleich vornehmen zu können, für Länder mit unterschiedlicher Bevölkerungszahl, für die man aber berechtigterweise die Annahme machen kann, dass sich ihre Einwohner im Hinblick auf sonstige relevante Merkmale gleich verteilen. Das ist der Grund dafür, dass die Fragestellung in unserem Eingangsbeispiel den Vergleich zweier Länder im Hinblick auf DIESELBE Variable bzw. den selben Zusammenhang zwischen Variablen zum Gegenstand hat. Eine Standardisierung, die nicht dem Vergleich unterschiedlicher Einheiten im Hinblick auf DIESELBEN Variablen dient, macht schlicht und ergreifen keinen Sinn.

Im vorliegenden Fall werden Daten auf unterschiedliche Basen bezogen. Sie sind somit NICHT vergleichbar, weil die Annahme, dass sich alle sonstigen Einflussfaktoren gleich verteilen, verletzt ist (ceteris paribus Regel). Man kann Zahlen nicht dadurch vergleichbar machen, dass man unterschiedliche Werte auf unterschiedliche Basen bezieht. Auf eine solche Idee kommt nur, wer betrügen will. Im vorliegenden Fall kommt neben dem Betrugsversuch noch hinzu, dass diejenigen, die die Berechnung durchgeführt haben, offenkundig ein Denkproblem haben, denn wozu sollte man einen Wert mehr oder minder auf sich selsbt standardisieren wollen, wenn es darum geht, einen Vergleich zwischen unterschiedlichen Werten anzustellen. Offenkundig verspricht man sich davon etwas anderes als eine Erkenntnis über die Relation zweier Werte zueinander.

Im vorliegenden Fall wird aus einer Hospitalisierungsinzidenz von 17 Geimpften und 25 Uneimpften und damit einem Verhältnis von 1,47 ein Verhältnis von 3,2 (0,83 Ungeimpfte auf 100.000 Ungeimpfte und 0,26 Geimpfte auf 100.000 Geimpfte) gemacht. Ein klassischer Betrug mit Zahlen, der nur dem Zweck dient, die Differenz zwischen geimpften und ungeimpften Hospitalisierten künstlich zu erhöhen.

Eine Standardisierung auf je 100.000 Geimpfte und Ungeimpfte ist auch deshalb Unfug, weil sie mit der impliziten Annahme einhergeht, dass beide Gruppen vergleichbar zusammengesetzt sind, was ganz offenkundig nicht der Fall ist, schon weil in der Gruppe der Ungeimpften neben denen, die sich nicht impfen lassen wollen oder mangels Angebot können, viele Erkrankte zu finden sind, die aufgrund medizinischer Indikationen nicht geimpft werden können, von denen seltsamerweise nie die Rede ist. Hinzu kommt, dass die Gruppe der Geimpften eine rechtszensierte Gruppe darstellen, d.h. das “Endergebnis”, das hier interessant ist, die Hospitalisierung, kann nach dem Erhebungszeitpunkt eintreten und das ist auch tatsächlich der Fall, wie die seit Wochen steigenden Anteile der Geimpften unter den Hospitalisierten zeigen, die sich in Relation zur Zeit, die seit der Impfung vergangen ist, einstellen.

Hier wird also manipuliert, dass es kracht und man fragt sich, was steht für die unterschiedlichen Betrüger in den verschiedenen Ländern auf dem Spiel, dass sie alle mit denselben unlauteren Methoden versuchen, ihre Bürger hinters Licht zu führen und im vorliegenden Fall eine “Pandemie der Ungeimpften” herbeizulügen, die es nun einmal nicht gibt?

Was auch immer für die Impf-Mafia auf dem Spiel steht, es muss erheblich sein.



Folgen Sie uns auf TELEGRAM

Anregungen, Hinweise, Fragen, Kontakt? Redaktion @ sciencefiles.org


Sie suchen Klartext?
Wir schreiben Klartext!

Bitte unterstützen Sie unseren Fortbestand als Freies Medium.
Vielen Dank!



  • Ethereum
Scan to Donate Ethereum to 0xFB4D6bf441BAB5193e4DCaA1Ff8542e54eE7bBCe

Donate Ethereum to this address

Scan the QR code or copy the address below into your wallet to send some Ethereum

Tag / Hinweis: - ScienceFiles-Spende

ScienceFiles Spendenkonto:

HALIFAX (Konto-Inhaber: Michael Klein):

IBAN: GB15 HLFX 1100 3311 0902 67
BIC: HLFXGB21B24


Bleiben Sie mit uns in Kontakt.
Wenn Sie ScienceFiles abonnieren, erhalten Sie bei jeder Veröffentlichung eine Benachrichtigung in die Mailbox.

ScienceFiles-Abo
Loading


Print Friendly, PDF & Email
25 Comments

Bitte keine Beleidigungen, keine wilden Behauptungen und keine strafbaren Inhalte ... Wir glauben noch an die Vernunft!

Diese Website verwendet Akismet, um Spam zu reduzieren. Erfahre mehr darüber, wie deine Kommentardaten verarbeitet werden.

ScienceFiles-Betrieb

Was uns am Herzen liegt ...

 

Ein Tag ScienceFiles-Betrieb kostet zwischen 250 Euro und 350 Euro.


 

Wenn jeder, der ScienceFiles liest, uns ab und zu mit einer Spende von 5, 10, 20, 50 Euro oder vielleicht auch mehr unterstützt, vielleicht auch regelmäßig, dann ist der Fortbestand von ScienceFiles damit auf Dauer gesichert.


Wir bedanken uns bei allen, die uns unterstützen!


ScienceFiles-Spendenkonto

Vielen Dank!

Holler Box